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ABSTRACT 

 Proprioception, the sense of position and movement of parts of the body is crucial for 

proper motor control, and its disruption is associated with various pathologies, particularly joint 

or muscle injury. While there have been studies into the functional changes of proprioception 

after injury, the underlying cellular and molecular mechanisms underlying this phenomenon are 

mostly unknown. Pain hypersensitivity following tissue or nerve damage is a possible analog to 

proprioceptive disruption. Inflammatory and damage-induced pain have been linked to 

activation of specific signaling pathways as well as the upregulation of various proteins. We set 

out to elucidate any parallel between injury-associated pain and proprioceptive disruption at 

the level of the spinal cord and dorsal root ganglia (DRGs). First, we analyzed global gene 

expression in dorsal root ganglia (DRGs) in a rat model of anterior cruciate ligament (ACL) 

injury, a condition commonly associated with altered proprioception. Subsequently, we sought 

to develop a protocol for targeting specific cells in the muscle proprioceptive circuitry, including 

DRG neurons and gamma motoneurons (γ-MNs) by combining DiI retrograde axonal tracing 

with single-cell RNA isolation. Preliminary results suggest an upregulation of matrix 

metalloproteinase 9 (MMP-9) and neurotrophin-4 (NTF-4) in DRG innervating lesioned knees in 

rats, suggesting neuropathic pain development, but no significant changes were found in any 

genes specific to proprioceptive afferents. DiI traced to the correct DRG and spinal cord regions, 

and a dissociated cell produced an adequate quantity of cDNA. The muscle tracing protocol 

provides a useful tool for further investigating proprioceptive alterations, the potential to 

modify the protocol for knee injections may further our understanding of complications in 

recovery from ACL injuries. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Proprioception is frequently disrupted after severe joint injury, and often leads to a decreased 

quality of life. A major example of this is the sensory deficit in anterior cruciate ligament (ACL) 

deficient knees. Few studies have examined the underlying cellular mechanisms of this 

phenomenon, however. Comparatively, much has been discovered regarding the cellular 

responses of nociceptors to inflammation and nerve damage and how those events lead to 

neuropathic pain. It is possible that analogous mechanisms are at work in proprioception. To 

address this, it is important to specifically target proprioceptive sensory neurons and γ-

motoneurons (γ-MNs) and analyze their phenotypes after injury. The best approach is likely an 

animal model using retrograde tracing dyes followed by enzymatic dissociation of the neural 

tissue in question. 

Background 

 Proprioception, the sense of position and motion of the parts of the body, is one of the 

main sensory modalities of the body and is indispensable for regulation of motion, balance, and 

posture. Several medical conditions have been demonstrated to be associated with 

proprioceptive disruptions including osteoarthritis1, spinal cord degeneration2, and joint injury3–

7. Proprioceptive neurons, like most mechanoreceptive neurons, have large-diameter, 

myelinated axons, with cell bodies in the dorsal root ganglia (DRG)8. At the distal terminals, 

these cells tend to innervate Golgi tendon organs (GTOs) in tendons and ligaments, and muscle 

spindles in muscle tissue9–11. These are known as A-α or type I afferents (Ia for muscle 
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spindles10,11, and Ib for GTOs9). Muscle spindles are modulated by specialized motoneurons in 

the spinal cord. Whereas α-motoneurons (α-MNs) innervate skeletal muscle fibers that contract 

the muscle, γ-motoneurons (γ-MNs) innervate fibers within the capsule of the muscle 

spindle12,13. These fibers contract, but do not contribute to overall muscle contraction, and 

instead put more tension on the muscle spindle, making it functionally more sensitive to 

stretching.  

 Proprioception has been studied in terms of muscle electrophysiology6,14–19 and physical 

function3,5,6,18,20. However, compared to other sensory modalities, such as pain, proprioception 

has received little attention from cellular and molecular researchers. In this review and the 

following papers, I will discuss the importance of proprioception in motor function, the 

disruption of proprioception in anterior cruciate ligament (ACL) injured knees, similar changes 

in pain models, and potential techniques for further studying these affects.  

Proprioception and Function 

 Effective locomotor function relies on proprioceptive circuitry. Information from 

proprioceptive fibers is typically necessary to initiate voluntary movement21, and lack of such 

inputs subsequent to injuries, such as dorsal column spinal lesion2, often results in ataxia. 

Perhaps the primary means by which proprioceptive afferents modulate limb and body 

movement is by mediating the stretch reflex. Sudden stretches of a muscle cause excitation of 

muscle spindle fibers, which project to the ventral horn of the spinal cord and excite motor 

neurons of the same muscle, causing it to contract and resist the motion22. In addition to 

eliciting a stretch response in the stimulated muscle, proprioceptors can also act synergistically 

with circuits of associated muscles. The Ia afferent neurons from muscle spindles, for example, 
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synapse with inhibitory interneurons that innervate motoneurons of opposing muscles. This 

way, the muscle opposing the contracted muscle relaxes, preventing co-contraction. 

 A further synergistic function of proprioception is the influence of ligament and tendon 

afferents on muscle afferent sensitivity. One study found that in deeply anesthetized cats, 

applying a 40 N stretch to the posterior cruciate ligament of the knee increased the firing rate 

of soleus and semitendinosus muscle sensory fibers during sinusoidal stretching23. Since this 

effect could be canceled by cutting the posterior articular nerve of the knee joint, the 

researchers determined the effect was due to stimulation of γ-MNs of the muscles in question. 

Therefore, it is evident that muscle proprioceptive systems are reliant on proprioceptive 

information from ligaments and tendons to acclimate sensitivity. A later study in dogs 

demonstrated a similar link between the cranial cruciate ligament (CCL) and the hamstring 

muscles17. 

 Distinct sensory neurons of the DRG are responsible for proprioceptive input. Evidence 

for this can be seen in genetically modified animal models lacking primary proprioceptive 

inputs, which suffer sensory ataxia, as pioneered by Ernfors and colleagues in 199424. A 

knockout mouse line was created by effectively deleting the gene encoding Neurotrophin 3 

(NT3) which is crucial for the survival of both mechanically-sensitive primary sensory neurons 

and motor neurons in the spinal cord. The NT3-/- mice experienced difficulty in placing limbs for 

movement, occasionally going rigid in all limbs. Upon necropsy NT3-/- mice lacked 

proprioceptive DRG neurons as well as Ia fibers compared to wild-type controls. More recently, 

a study showed that targeted knockout of proprioceptive afferents resulted in adult mice 

exhibiting motor deficits due to mistimed muscle contractions in comparison to control 
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animals14. The researchers noted this was due to the breakdown of patterns typically observed 

in walking and swimming. 

 Conversely, an overabundance of proprioceptive input can be detrimental to proper 

motor function as well. Transgenic mice that overexpress NT3 in skeletal muscles develop 

excess numbers of large diameter sensory axons and large diameter cells in DRG25. This resulted 

in significantly widened steps compared to wild-type littermates, and to severely decreased 

performance on balance beam and rotarod tests. Taken all together, the evidence suggests that 

homeostasis of NT3 signaling and, more importantly, fine-tuned proprioceptive faculties are 

necessary for motor control. 

Disruption of Proprioception and the ACL Model 

 Proprioception can be disrupted as a result of aging26,27 or injury3–7,15,18,20. Elderly human 

subjects tend to exhibit weaker electromyographic (EMG) responses in response to electrical 

stimulation of the sensory nerve (H-reflex) than younger individuals. This is particularly crucial 

to motor and posture control in the case of soleus muscle H-reflex26,27. Younger subjects have 

selectively diminished H-reflexes in the soleus muscle while standing than while lying prone, 

preventing a reflexive contraction from disrupting their balance. In older subjects, the soleus H-

reflex is weak when tested in either position. 

 Joint injuries and inflammation are common causes of proprioceptive dysfunctions, with 

one of the most common locations being the knee joint. Among the most common knee 

injuries is rupture of the ACL. Human athletes are at high risk of injury, and many patients do 

not sufficiently regain previous levels of activity afterward18. Structural stability can reliably be 

regained in ACL after rupture through surgical reconstruction using a graft from another tendon 
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on the patient’s leg (autograft) or from using donor tissue (allograft). This stability is typically 

measured in terms of laxity, or the distance the tibia will shift forward in response to applied 

pressure. This is expressed as a differential between the laxity of the injured knee and that of 

the uninjured knee, using an arthrometer5,6. There are also measures for activity and function 

of the knee joint in patients after ACL injury. Two common assessments are the Lysholm and 

Tegner scales, which score the knee joint based on a questionnaire about a patient’s level of 

activity and quality of life28. A common problem for patients unable to return to previous levels 

of activity is the sensation that the knee is going to “give way,” or that there is a sensation of 

knee failure when sub-failure stress is applied to an otherwise stable knee6,29. 

Controversy remains as to whether reconstructive surgery or conservative treatment 

and rehabilitation are the best course of action5,30,31, with some studies suggesting that surgery 

increases the risk of osteoarthritis later30. Conversely, several studies have shown better 

function of the knee in patients who undergo reconstructive surgery after ACL rupture5,31. In a 

study using matched pairs, patients who underwent reconstruction had better outcomes based 

on questionnaires regarding activity31. 

 Importantly, the ACL appears to have a role in providing more than just a direct 

mechanical support to the knee joint. It serves as a sensory organ for detecting motion and 

position of the knee5, and for mediating stabilizing muscle responses16,32–34. Early evidence for 

this came from histological studies which found sensory endings32,35. In particular, sections on 

the CCL of a cat revealed structures that were likely Golgi tendon organs (GTO) and others that 

were potentially Pacinian corpuscles, which respond to stretch and vibration respectively.  
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The presence of a hamstring reflex in response to ACL stimulation serves as direct 

functional evidence of its role in proprioception. When pressure is applied to the leg to cause 

mild anterior translation of the tibia, an EMG response is reliably detected in the 

hamstring6,34,16,33,36. This same phenomenon is also observed in dogs37. Recent work has shown 

in humans that this response follows a predictable pattern, where an initial response is 

detected at 20 ms after stimulation (short latent response, SLR) and another is detected at 

around 35 ms (medium latent response, MLR)6,36. Intraoperative mechanical stimulation of the 

ACL has verified its role in this reflex34. Therefore, it is reasonable to conclude that 

proprioceptive information directly from the ACL synapses with motor circuitry to stabilize the 

knee. 

In recovery, a return to previous activities is associated with both self-reported 

satisfaction with the knee and with proprioceptive function1. Beard and colleagues found that 

knee laxity in un-reconstructed ACL-ruptured patients was not significantly correlated with 

perceived stability of the knee, measured by the frequency of the “giving-way” sensation15. 

However, knee stability was strongly and significantly correlated to the delay of the hamstring 

reflex in comparison to the uninjured knee. Further studies in humans and dogs have 

consistently shown a delayed hamstring reflex MLR in legs with ACL ruptures6,37. 

There is still controversy as to whether proprioceptive fibers reinnervate grafted tissue. 

When Ochi and colleagues applied mechanical stimulation to reconstructed ACLs 

intraarticularly, somatosensory evoked potentials were detected via electroencephalogram 

(EEG)38. However, in a model using electrical stimulation, Krogsgaard found that much higher 

currents were required to stimulate reflex responses in reconstructed ACLs compared to the 
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intact Posterior cruciate ligament (PCL), and that this was most likely what they term “overflow 

stimulation” in neighboring PCLs29. In biopsies of Achilles tendon grafts, no evidence was found 

of complete proprioceptive endings, though other newly-developed structures were found39. 

It is unclear how various proprioceptive changes occur in injured knees, or what affects 

their severity. While the research described above has shown improvements after 

reconstruction, a neuropathological phenotype remains in some otherwise-healthy individuals. 

A potential analog to this is in neuropathic pain generated by inflammation or peripheral injury. 

Nociceptive neurons show increased sensitivity subsequent to various experimental conditions. 

If similar changes occur in proprioceptors, it could be a mechanism for the “giving-way” 

sensation. 

Chronic Pain Models 

 Thermal and mechanical hypersensitivity are hallmarks of nerve damage and chronic 

inflammation. Inflammation and nerve damage have both been shown to induce molecular and 

functional phenotypic changes in nociceptors. Immunohistochemical analysis has linked nerve 

ligation and axotomy with upregulation of a distinct set of proteins40–43. Similar results have 

been found in models of skin and muscle inflammation as well as arthritis44–46. Three 

mechanisms are believed to be involved in peripheral nociceptor sensitization: 

neuroinflammation, alteration of calcium-mediated signaling, and changes in membrane 

potential. 

The links between inflammatory events and sensory changes are well documented. 

Arthritis has been induced in rodent models by lesioning the CCL, resulting in decreased weight 

bearing on the injured limb, as well as a lower threshold of heat and mechanical stimulation 
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required before the paw is withdrawn in comparison to controls47. In rats with Complete 

Freund’s Adjuvant (CFA)-induced knee arthritis, animals began to struggle at lesser angles of 

passive motion on arthritic knees in comparison to the contralateral joint48. Carrageenan 

injected into either the knee or the hamstring produced similar results, although pain behavior 

was elicited in the contralateral side with higher-dose injections49. Following ligation of the fifth 

lumbar (L5) spinal nerve, paw withdrawal threshold in response to pressure on the skin was 

decreased to less than 20% of control levels for at least two weeks post operation40. 

 Phenotypic changes in injured afferents are possibly a result of mitogen activated 

protein kinase or extracellular-signal-related kinase (MAPK/ERK)-pathway-mediated 

neuroinflammation. A greater percentage of lumbar DRG neurons were immunopositive for 

phosphorylated ERK following CFA injections, and this effect was further increased in tissues 

collected shortly after passive motion of the knee joint48. Both inflammation and spinal nerve 

ligation result in activation of p38-MAPK40,44. Inhibiting p38-MAPK activation was shown to 

reduce heat hyperalgesia44 and mechanical allodynia40. MAPK pathways are subject to signaling 

from G-protein coupled receptors (GPCRs), interleukin receptors (ILRs) and growth factor 

receptors (GFRs)50. It is possible that in response to injury, the growth-related function of MAPK 

cascades is important for recovery in sensory neurons, but that the pro-inflammatory pathways 

result in a collateral contribution to neuropathological conditions.  

 In all models of inflammation and nerve injury, Activating Transcription Factor 3 (ATF3) 

has been detected in the nuclei of all neuronal types41,42,46,51. This has previously been 

established as a reliable marker of neural response to injury, reaching peak expression after five 

to seven days52. ATF3 is a member of the Cyclic-AMP-Response-Element-Binding (CREB) protein 
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family53, though in reality it has a repressive effect on the transcription of its target genes. It is 

typically located in the nucleus and is activated by calcium- and cAMP-dependent kinases that 

are transported from the cytoplasm. Like the MAPK family, ATF3 has been demonstrated in 

neurons to be crucial for regeneration after injury42. 

 Another group of proteins involved in neuroinflammatory pathway of neuropathic pain 

is the matrix metalloproteinases (MMPs). Short-term responses to nerve-injury include an 

upregulation in MMP-943,45, followed by a later phase marked by MMP-2 upregulation45. MMP-

9 may mediate pain via the cleavage and activation of extracellular interleukins54. Evidence 

suggests that ATF3 and MAPK have important regulatory functions on MMP activity after 

inflammation. ATF3 down-regulates MMP-2 by repressing its transcription51, and so may be 

important for ending the inflammatory phase of nerve injury. Conversely, inflammation-

induced upregulation of MMP-9 is dependent on MAPK55. It is unknown how relevant this is to 

proprioception. It remains to be seen whether there are any analogues. 

 Further reduced thresholds of pain sensitivity are most likely due, in part, to 

electrophysiological changes in affected cells. Axotomized A-fiber neurons traced from plantar 

muscle and skin exhibited oscillations in response to sub-threshold depolarizations56. These 

oscillations, in turn, resulted in repeated action potentials. Following intraplantar injections of 

CFA, large-diameter DRG neurons in rats expressed increased peak current and relative 

conductance57. Wu and Henry found that in Aβ-fibers from knees with experimentally-induced 

arthritis, action potential rise-rate was slower and action potential duration was longer when 

compared with control fibers58. This same effect was not observed in c-fibers. In a later study, 
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they also found a lower threshold and increased rate of fire from Aβ-fibers of arthritic joints59. 

This suggests an alteration of the ion channels expression in inflamed and damaged axons. 

 Specific voltage gated sodium channels (Nav) have been mechanistically tied to 

decreased pain threshold and increased signalling. Tetrodotoxin (TTX)-resistant sodium 

channels Nav1.857,60 and Nav1.961 appear to mediate chronic pain and allodynia. Large sensory 

neurons in CFA-treated rats had lower thresholds even when treated with TTX57. More Nav1.8 

immunopositive neurons were found in DRGs from these animals. In another study, treatment 

with RNA antisense to scn10a (the gene for Nav1.8) increased paw withdrawal thresholds, and 

decreased TTX-resistant currents60. In a carrageenan model of hindpaw inflammation, Nav1.9-

knockout mice did not show the same level of pain behavior as wild-type animals61. This 

behavior was ameliorated in wild-type subjects when treated with antisense RNA to knock 

down Nav1.9 expression. Interestingly, inflammation did not result in an upregulation in Nav1.9 

mRNA in wild-type mice. Since antisense RNA could still decrease Nav1.9 activity, it suggests 

that inflammation increases translation due to an underlying epigenetic mechanism. A possible 

analogous situation to this in proprioceptors is the de novo expression of Nav1.7, a TTX-sensitive 

channel, that has been observed following spinal nerve ligation62. 

The above described evidence gives reason to believe that proprioceptive afferents may 

be sensitized via a pathway analogous to that of pain fibers following nerve damage or 

inflammation of sensory target tissue. As mentioned, certain proteins are upregulated in all 

DRG neurons following injury. It is also worthy of note that much of the pain activity was 

mediated by large, mechanically-activated neurons, which share certain features with 

proprioceptors, such as the neurotrophin receptor TrkC 8,63. It is yet to be determined whether 
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proprioceptive fibers do undergo changes analogous to those of nociceptors in response to 

injury. If so, a further question is how the different modalities, proteins, and central terminals 

proprioceptors affect these phenomena in comparison to those of nociceptors, and how the 

consequences of these pathways differ. 

Experimental Approaches for Targeted Proprioceptor Analysis 

 Past research on proprioceptive deficits specific to joint injury have focused mainly on 

clinical models looking at EMG and overall sensory function. Conversely, experiments looking at 

the effects of damage to the target tissue have nearly all been done in view of pain models. Full 

understanding of proprioceptive changes requires analysis of cellular and molecular responses 

as well. In one injury model, proprioceptive neurons expressed ATF3 after sciatic nerve 

axotomy or spinal nerve ligation41. In a nerve-crush model of injury, Taylor and colleagues 

found that mice overexpressing NT3 recovered proprioceptive function sooner than wild-type 

mice25. However, these mice also had proprioceptive deficits before the injury.  

 There is a need for proprioceptive animal models with no congenital deficit before 

injury, and in which the molecular phenotype of cells directly involved can be isolated. One of 

the greatest challenges is isolating the individual neurons innervating a given target and 

separating them from surrounding cells. To this end, we suggest the combined use of 

retrograde tracers with enzymatic tissue dissociation, allowing the collection of single cells for 

gene-expression analysis. Such combinations have already been used successfully for 

electrophysiological studies56,61,64. Further steps can then be taken to cull non-proprioceptive 

DRG neurons and α-MNs. 
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Retrograde axonal tracing dyes 

Many compounds are available for tracing the axons of cells from target tissue. The two 

major groups are viral and chemical tracers65,66. Tracers for proprioceptive experiments must be 

long-lasting, readily taken up by nerve terminals, and must not have a severe impact on the 

function of the target cells. Many traditional tracing methods have drawbacks that are not 

compatible with these requirements. 

Viral tracers typically use rabies66,67 or herpes68 virus. They are reliable tracers but are 

problematic because they, by necessity, must alter the physiology of the cell. Viruses alter gene 

expression in order to replicate. In addition to being a potential confounding variable, this often 

leads to the degeneration and death of the traced cells69. The destruction of the cells you wish 

to analyze means that viral tracers are limited to use in studies on connectivity and 

neuroanatomy. 

Chemical tracers mainly include enzymes, bacterial toxins, and fluorescent dyes. Two of 

the more frequently used tracers for histological studies are horseradish peroxidase70 (HRP) and 

cholera toxin B (CTB)66. HRP and CTB both require extensive histological processing, and have 

short detection times within living tissue65. This makes them less suited for experiments 

involving long-term response of sensory and motoneurons to peripheral events. 

Fluorescent dyes are ideal for identifying neurons in extended experiments for several 

reasons: most have not been shown to by cytotoxic, they require no immunological or 

enzymatic treatment to visualize, and they are detectable for weeks or months after 

treatment65. Three of the most popular dyes for such studies are FastBlue, FluoroGold, and DiI. 
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One of the popular and effective retrograde tracing dyes is Fast Blue (FB). It is water 

soluble and resistant to photobleaching71. Injected intramuscularly (IM), it traces both sensory 

and motor fibers72,73. In a severed-nerve model, it was shown to label the maximum number of 

motoneurons at 12 weeks, and persist until at least 24 weeks71. It is actively transported 

through the axon, and may reach the soma in 5 days from most injection sites. 

Fluoro-Gold (FG) is a water-soluble fluorescent dye commonly used in retrograde tracing 

of neurons. At physiological pH, it typically appears green-yellow when viewed under UV 

fluorescence with no filters in the visible spectrum. FG is typically administered dissolved in 

0.9% saline74, and is readily taken up by sensory terminals, and can trace most fibers in a rat’s 

body within a week71,75,76. It has been used in numerous studies for tracing the knee joint in 

animal models by injecting a solution into the joint capsule48,77,78. Unfortunately, FG is only 

suitable for short-term experiments of less than three weeks, since the number of positive cells 

begins to decrease after four weeks and one week is required for tracing71,75. Additionally, FG is 

more susceptible to photobleaching in aqueous solutions76, making it more challenging to use 

for picking cells. 

The lipophilic molecule DiI has long carbon sidechains that allow it to become integrated 

into the membrane. This allows for passive transport of DiI by diffusion along the membrane, 

and allows for the tracing of fixed tissues in dead animals79. However, this same feature of DiI 

means it is slower to reach the cell bodies than other fluorescent dyes. DiI has been shown 

capable of tracing axons innervating various types of tissue, including joint75, muscle80, and 

skin81. IM injections of DiI have been used to identify both sensory neurons and motoneurons80. 
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It is well-suited for long-term studies as it can be detected as much as nine months after 

treatment75. 

The lipophilic nature of DiI creates two problems, however. The first problem is that 

diffusion traces much more slowly than the active transport that carries other fluorescent dyes. 

Fortunately, this does not make it incompatible with long-term studies on proprioceptors. The 

second problem is that DiI does not readily dissolve in water or saline. This can be an obstacle in 

delivering the dye to the target tissue. To address the latter problem DiI can be suspended in 

these solutions by first dissolving thoroughly in dimethylsulfoxide (DMSO)82,83. Unfortunately, 

DMSO can be cardiotoxic when chronically administered to mice at high doses 

intraperitoneally84, and small doses of intraocular DMSO were shown to induce apoptosis in 

retinal ganglion cells85. This toxicity in other tissues has not been observed at small doses in 

muscle or joint tissue, which is why it has frequently been used for IM injections of fluorescent 

tracers in mice, typically at around 10% in solution83,86.  

Techniques for single-cell isolation 

 The appropriate tissue dissociation technique is important for obtaining intact cells with 

high-quality RNA and without confounding material. This typically involves placing the tissue 

into a buffered solution of proteolytic enzymes. The particular enzymes and their concentration 

required will depend on the animal and on the tissue, as the matrix protein makeup can differ 

based on these factors. 

 One of the most commonly used proteases is trypsin. Trypsin is an effective serine 

protease derived from pancreatic tissue. It is one of the more quickly-acting enzymes available 

for tissue dissociation, and is favored in many cell culture techniques. Some researchers, 
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however, have found it to be too cellulolytic and have stated a preference not to use it87. This 

presents a challenge when looking at the small populations of target-delineated cells. However, 

some electrophysiologists have successfully used it and obtained traced cells for patch 

clamping56. Furthermore, other researchers have used alternative enzymes with satisfactory 

results, even for single-cell gene expression profiling88,89. 

 Other commonly used enzymes for neural tissue are collagenase and papain. 

Collagenase hydrolyzes the bond between the glycine residue connected to its backbone 

nitrogen. This is a much gentler process than trypsin, and is often used in conjunction with 

dispase87,90. Papain is derived from papaya latex and cleaves the bond at the carboxyl end of an 

arginine or lysine following a hydrophobic residue. It is typically used in less physically robust 

tissues, such as the retina91. A few protocols have used papain following collagenase for 

dissociating DRGs87,90. However, papain is typically activated using ethylenediamenetetraacetic 

acid (EDTA), an inhibitor of collagenase activity. It remains to be tested whether following 

papain with collagenase provides a greater number of intact cells than collagenase alone, as the 

latter option is a possibility92, and changing out enzyme solutions could result in a loss of cells. 

Cell-type specification 

 While changes may be expected in nociceptors in response to target-tissue damage (and 

α-MNs in the case of muscle traces), these are likely to involve different genes and would likely 

skew or confound the results of an experiment. It is therefore necessary to identify the correct 

and incorrect cell populations, and either separate them before harvesting RNA, or separate 

them based on gene expression profile. 
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 Identifying proprioceptors among DRG neurons and γ-MNs in the spinal cord can both 

be done to some extent based on size. Proprioceptive DRG neurons tend to be of larger 

diameter than most nociceptors8,63. However, there is no guarantee that all cells within the 

targeted size range will be proprioceptors, as there is significant overlap with non-

proprioceptive mechanoreceptors. Size differentiation is more reliable in spinal motoneurons, 

as motoneurons with a cross-sectional area below 300 µm2 are almost entirely γ-MNs, while 

those above 500 µm2 are nearly all α-MNs72,93. Again, this is still not entirely reliable, as there is 

some size overlap beyond these points, and γ-MNs over the size threshold would be lost, which 

is problematic when the cell population of interest is already small. 

 A more reliable way to determine cell type is to use a cell-specific gene as a marker. In 

the DRG, proprioceptors persistently express parvalbumin, whereas other neurons do not 

express it at all94. In the ventral horn of the spinal cord, γ- and α-MNs can be distinguished from 

their expression of Err3 and NeuN respectively72,93. These markers can be taken advantage of in 

two ways. The first is to acquire or construct a transgenic line where cells expressing the marker 

also express a fluorescent protein (that doesn’t overlap with the fluorescence profile of the 

tracer dye). This would allow for selecting cells of the correct type before they are collected for 

RNA extraction. The second way to utilize these markers is to sort out the data after gene 

expression profiles have been made. If multiplexed single-cell quantitative polymerase chain 

reaction (qPCR) is used, testing for marker-gene expression can be used as a criterion for 

inclusion. Similarly, if RNA-Seq is used, cell profiles can be sorted into various discrete cell 

types95,96. 
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Conclusions 

 Proprioceptive deficits following joint injury models have been well-documented and 

tested in clinical patients and animals, but the underlying cellular mechanisms have been left 

relatively unexamined. Pain models in primary nociceptive pathways under nerve injury and 

inflammation models have been extensively studied, and point to a role of neuroinflammation-

mediated upregulation of ion channels which in turn decrease the threshold of DRG neurons 

and an increased sensitivity and rate of action potentials. Many of the upstream signaling 

proteins involved in these phenomena are also upregulated in proprioceptive neurons in the 

same models. This then begs the question of whether disrupted proprioception, including the 

feeling of “giving way” in otherwise stable knees, is mediated by analogous pathways. Perhaps 

proprioceptive deficiencies are comparable in molecular pathway to peripheral neuropathic 

pain. 
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CHAPTER 2 

A PILOT STUDY IN THE GENE EXPRESSION OF DORSAL ROOT GANGLIA AFTER CRANIAL CRUCIATE 

LIGAMENT RUPTURE IN RATS 

Abstract 

Cruciate ligament (ACL/CCL) ruptures are common orthopedic injuries in both human and 

veterinary patients, commonly resulting in proprioceptive disruptions. We hypothesize that 

proprioceptive neurons innervating knee joints with ruptured ligaments undergo phenotypic 

changes analogous to those observed in nociceptors in models of inflammatory and 

neuropathic pain. In this pilot study, we compared gene expression profiles of whole dorsal 

root ganglion (DRG) samples from CCL-lesioned rats to those from sham-operated rats using a 

qPCR array specific for synaptic plasticity. No gene showed a significant change in expression 

between groups, however matrix metalloproteinase 9 (MMP-9) and neurotrophin 4 (NTF4) 

both tended to be expressed more highly in the DRG ipsilateral to operated knees in lesioned 

rats. 

Introduction 

 Cruciate ligament tears are a common, debilitating, and costly orthopedic injury in both 

human and veterinary patients. The anterior cruciate ligament (or cranial cruciate ligament in 

veterinary patients, ACL/CCL) is located inside the knee or stifle joint and resists anterior tibial 

translation and medial tibial rotation. The overall rate of such injuries is unknown, but in the 

United States, an estimated 130,000 reconstructive surgeries in human patients were carried 

out in 20061. The annual cost of care for human patients in the U.S. was estimated to exceed $7 

billion in 20132, and the annual cost in dogs was over $1 billion in 20033. 
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  Treatment options typically involve reconstructive surgery and have promising success 

rates in restoration of mechanical stability4,5. Unfortunately, this does not necessarily result in a 

full return to function. Patients have frequently reported a feeling of “giving way,” or the 

sensation that the knee is failing, when sub-failure stress is applied to the knee6,7. This suggests 

that the ACL/CCL has an important role in proprioception, and that this function is disrupted 

after injury. 

 Supporting the notion of a sensory role for the cruciate ligament is the presence of 

mechanically-sensitive receptors in histological sections8,9 and electrical responses to ACL/CCL 

stimulation observed in hamstring electromyograms (EMG)6,10–13 giving an initial short latent 

response (SLR) followed by a medium latent response (MLR). Both human and canine patients 

demonstrate an altered hamstring reflex EMG after injury. In humans, the MLR of the injured 

leg is delayed compared to that of the contralateral leg6. Dogs also display a delayed MLR after 

CCL rupture, but it is observed in both the affected and contralateral limb14. This suggests that 

injury of the ACL/CCL has a disruptive effect on proprioception. 

 Previous research into chronic pain has shown plastic changes in nociceptors after 

peripheral injury15–17. In this pilot study, we aimed to see if phenotypic changes could be 

observed in terms of gene expression after CCL rupture in a rat model. To this end, we collected 

RNA samples from whole dorsal root ganglia (DRGs) in rats three weeks after ligament rupture 

or sham surgery and analyzed them using a quantitative polymerase chain reaction (qPCR) 

array focusing on synaptic plasticity. No significant changes in gene expression were observed 

between lesioned rats and controls, but several genes associated with neuropathic pain models 

were more highly expressed in DRGs ipsilateral to injury. This was followed up with 
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immunohistochemistry (IHC) of DRG from either side of rats with unilateral CCL lesions, but the 

data did not support the qPCR results. 

Methods 

CCL injury model 

Twelve adult male Sprague-Dawley rats of 8 to 10 weeks of age were obtained from 

Charles River Labs and Harlan. Animals were housed two to a cage and all efforts were taken to 

minimize suffering and discomfort. All procedures were approved by the Iowa State University 

Institutional Animal Care and Use Committee. 

 For surgeries, animals were generally anesthetized by 2% isoflurane in oxygen, and kept 

on a warming pad set on low for the duration. An incision was made on the medial side of the 

right knee, and the patella was held gently to the side. For eight rats in the experimental 

condition (four for gene expression, eight for histology), the cruciate ligament was cut using a 

hooked micro dissection knife (Dean Knife, Roboz). For the other four rats in the sham group, a 

blunt probe was briefly placed into the knee joint. The surgical sites were then rinsed with 

sterile saline and sutured closed in layers. Before waking, each rat was given an injection of 0.3 

mL (0.009mg) of buprenorphine. Each rat was fed 0.25 mL (0.075 mg) of buprenorphine mixed 

in Nutella every 12 hours for 48 hours after the operation, and monitored for signs of 

discomfort. 

Tissue collection for gene-expression analysis 

 Three weeks after operation, animals were deeply anesthetized under 2-5% isoflurane, 

and given an injection of pentobarbital (Beuthenasia, minimum 0.3 mL per animal) 

intraperitoneally. This timepoint was chosen to assess the long-term effects of the injury. DRGs 
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from lumbar 4 and 5 (DRG L4 and 5) were located by following the sciatic nerve up from the leg. 

DRG L4 and 5 ipsilateral to the operation in each animal were pooled together as one sample, 

and the DRG L4 and 5 from the contralateral side were taken as a control. After removal, DRG 

were rinsed in phosphate buffered saline (PBS) and placed in RNAlater (Ambion) at 4°C 

overnight. After one night, samples were moved to -20°C. 

Reverse transcription quantitative PCR (RT-qPCR) 

 RNA was extracted using RNeasy Kits (Qiagen) according to manufacturer instructions. 

Using an RT2 Nano PreAMP kit (SA Biosciences) 50 ng of RNA from each sample was used to 

synthesize cDNA which was then pre-amplified. Amplified samples were then analyzed using 

96-well RT2 Profiler Arrays (SA Biosciences) in a StrataGene thermocycler. The contralateral 

DRG from one of the knee-lesioned rats produced no RNA, and the animal was thus excluded 

from further analysis. 

Tissue collection for immunohistochemistry 

 DRGs were harvested at 3 weeks and rinsed as before. L4 DRGs were placed in 4% 

paraformaldehyde (PFA) in PBS at 4° C overnight. The next morning, tissues were transferred to 

30% Sucrose at 4° C for 48 hours. Afterward, tissues were embedded in O.C.T. (Tissue Tek) in 

cryomolds and flash frozen using dry ice. Samples were stored at -80° C until sectioned. 

 Sections were cut on in a cryostat (Cryostar NX70, Thermo Scientific) with a block and 

blade temperature of -20° C. 6 µm sections were collected onto Superfrost plus slides (VWR) 

sequentially across 10 slides in a series at 8 sections per slide. Each sample yielded three series. 

Slides were dried at around 43° C for 30 minutes before being placed in 5-slide mailers in a 



33 

 

desiccating box overnight. The mailers were sealed using electrical tape and stored at -80° C 

until further processing. 

Immunohistochemistry and image analysis 

 Slides 1-5 from series 2 on each sample were allowed to acclimate to room temperature 

for 30 minutes before being unsealed and processed. This series was selected as it was 

approximately halfway through the DRG for most samples. Sections were washed and stained 

using a technique previously described18. Briefly, cells were washed in three baths of PBS and 

blocked in 2% BSA with triton X-100 and Tween 20 for 1 hour before being treated overnight 

with primary antibodies (Rabbit anti-TrkC, Santa Cruz, 1:200; Goat anti-MMP9, Santa Cruz, 

1:100) at 4° C. TrkC was selected for analysis, as it is indicative of mechanoreceptive 

neurons19,20. Sections were then washed in more PBS baths, and stained with fluorophore-

conjugated secondary antibodies (Affinipure Cy5-conjugated donkey anti-goat, Jackson, 1:100; 

Affinipure AlexaFluor-488-conjugated donkey anti-rabbit, Jackson, 1:100) for 90 minutes at 

room temperature. Samples were then washed in PBS, followed by H2O baths, and finally dried 

in graded ethanol solutions and HistoClear (Electron Microscopy Sciences). Once dried, sections 

were mounted with Pro-Long Gold with DAPI (Life Technologies), coverslipped, and cured 

overnight in a light-proof container. Each set of slides contained a negative control with no 

primary antibodies. 

 Immunostained slides were blinded for assessment. Images of slides were obtained 

using a Nikon inverted microscope (TE-2000U) and a SPOT digital camera (Diagnostic 

Instruments) and 20X magnification. Using ImageJ, DAPI-stained nuclei were used to select cells 
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for analysis. DAPI-positive cells were traced by hand, and the mean intensity of fluorescence 

was measured in both the green and the red channels. 

Data analysis 

 CT values (the cycle at which the fluorescence threshold is reached) for each gene in a 

sample were compared against the pooled average of CT values of four housekeeper control 

genes in the arrays. A fifth housekeeper encoding β2 microglobulin (B2M) was excluded, as its 

CT value varied widely between samples. The average CT value of the housekeepers for the 

plate was subtracted from the CT of each gene, giving a ΔCT. For each animal, the ΔCT values 

from the sample ipsilateral to operation were subtracted from the ΔCT value from the 

contralateral side, generating ΔΔCT values. For each gene, the average ΔΔCT values for the CCL-

lesioned group were compared to those of the sham-operated group, and a Student’s t-test 

was used to determine the p-value. Fold changes between control and operated sides are 

expressed as 2-ΔΔCt. One of the rats from the CCL-lesioned group was excluded from analysis, 

because the control sample yielded no RNA. 

 Immunostaining was analyzed in terms of relative expression as previously described21. 

Background fluorescence was determined individually for each section by measuring mean 

intensity from non-stained nerve tissue and subtracting it from each cells value. This provided 

the raw mean intensity for each cell. Relative intensity scores were then determined using the 

formula: 
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Raw Mean Intensity refers to the mean intensity value of the cell being measured, Minimum 

Intensity is the mean intensity of the DAPI-positive cell at the minimum in that particular slide, 

and Maximum Intensity is the mean intensity of the DAPI-positive cell with the highest. Data 

from all rats were pooled, and samples ipsilateral to lesion were compared to those 

contralateral using a Mann-Whitney U test.  

Results 

Moderate upregulation of Matrix metalloproteinase 9 and Neurotrophin-4 gene expression 

 Three weeks after injury, DRG were collected from L4 and 5 on both sides of each rat. L4 

and 5 from the same side on the same animal were homogenized together, and RNA was 

extracted, reverse-transcribed, and then analyzed using qPCR arrays. ΔΔCT was calculated for 

each gene in each animal by comparing ΔCT expression between the sides. These values were 

then pooled for the two groups for between group comparison. 

No genes showed significantly different regulation (p ≤0.05). However, there were 

several points of interest. Matrix metalloproteinase 9 (MMP9) was upregulated in DRGs from 

the operated side of lesioned animals (Fig 1 heat map, mean ΔΔCT = -1.41, 2.66-fold increase 

from contralateral), whereas it was slightly downregulated on average in sham-operated 

animals (Fig 2 heat map, mean ΔΔCT = 1.17, 2.25-fold decrease from contralateral). Notably, 

MMP-9 is associated with increased pain phenotypes in response to inflammation and 

injury16,22. Neurotrophin-4 (NTF4) a neurotrophic factor binding TrkB, was upregulated in the 

operated side of all lesioned samples (Fig 1, mean ΔΔCT = -0.72, 1.65-fold increase from 

contralateral). Expression of NTF4 was lower in the operated side of all sham-operated animals 

(Fig 2, mean ΔΔCT = 1.44, 2.71-fold decrease from contralateral). 
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IHC did not show protein expression supporting qPCR findings 

 Four rats with surgically lesioned CCLs on the right side were sacrificed three weeks 

after surgery, and DRG L4 from each side of each animal was collected and prepared for IHC. 

Sections taken from approximately midway through the DRG were collected onto slides, and 

immunostained (Fig 3a and 3b) for TrkC (green fluorescence) and MMP-9 (red fluorescence). 

TrkC expression was assessed in an attempt to discern mechanoreceptive neurons19. Relative 

fluorescence intensity measurements from DRG sections contralateral to injury (Fig 3a) were 

pooled and compared to the pooled measurements from DRG sections ipsilateral to injury (Fig 

3b). 

 Immunostaining did not support the notion of upregulation of MMP-9 protein in DRG 

innervating lesioned knees, and in fact contradicted the data from RT-qPCR experiments. 

Sections from DRGs contralateral to knee lesions showed slightly but significantly higher 

relative intensity in MMP-9 staining than did ipsilateral sections (p = 0.0129, Fig 3c). On the 

other hand, relative intensity for TrkC immunolabeling was strongly and significantly higher in 

sections ipsilateral to injury (p < 0.0001, Fig 3d). This change in immunoreactivity for TrkC is not 

expected, and likely indicates some confounding effect since there is no correlation between 

cell area and relative intensity (Fig 3e) which we would expect there to be19. 

Discussion 

 Most genes showed no notable change subsequent to either CCL lesion or sham 

operation, and no changes were statistically significant. Some genes did show a change in 

expression level, and for some of these genes the lack of significance is due to the small size of 

the study (n=3 lesioned rats, n=4 sham rats). However, MMP-9 and NTF4 both tended to be 
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upregulated in DRG innervating lesioned knees. While the results of the IHC experiment 

contradict the findings of upregulated MMP-9, it should be noted there were some problems 

with the difference was rather small, and that there were some problems with the slides. First, 

even though slides did show more fluorescence than negative controls, intensity was week, and 

long exposure times were required (2022 msec for TrkC, 2960 msec for MMP-9). This is cause to 

doubt the relevance of the IHC data. Therefore, even though the MMP-9 protein 

downregulation in DRG ipsilateral to lesion was more significant than the mRNA upregulation, 

there is more reason to trust the gene expression analysis, and suspect an upregulation of 

MMP-9 is more likely. 

The upregulation of MMP-9 could be important, as it is upregulated in the initial phase 

(roughly one to three days) after nerve injury or peripheral inflammation16,22. It plays a role in 

mediating further neuroinflammation by cleaving and activating extracellular cytokines16. While 

MMP-9 is only slightly elevated at the three-week timepoint, it is likely that it would show 

strong upregulation at an earlier timepoint. MMP-9 upregulation peaks at three days post-

inflammation, and by day seven it subsides to slightly above control levels16. 

The upregulation of NTF4 could suggest a role in recovery. NTF4 is a member of the 

neurotrophin family of growth factors, and binds TrkB, the same receptor as brain derived 

neurotrophic factor (BDNF)23. Activation of this receptor is involved in growth and survival of 

certain subsets of neurons, but in nociceptors, it is also associated with the development of 

neuropathic pain24,25. Less research has been done on NTF4, but it has been tied to activity 

dependent regeneration of nerve fibers after peripheral damage in a mouse model26. A 
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hypothesis can be drawn, then, that CCL lesion leads to a painful phenotype of afferents that 

has a gross effect on the DRG. 

There is little to be determined in terms of proprioception from this experiment, as 

none of the genes upregulated are specifically involved in this capacity. Furthermore, cell 

bodies of proprioceptive fibers innervating the knee make up at most less than 400 cells27 out 

of thousands of other neurons in a given DRG, in addition to many more satellite glial cells. 

Future studies in this direction would benefit from the use of targeted analysis, such as tracing 

afferents from the joint27,28. From this point, cells can be analyzed histologically, or dissociated 

for single cell transcript profiling29,30. 
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Figure 1. Heatmap of gene expression in DRGs of CCL-lesioned rats. 

Fold-change between the DRGs ipsilateral and contralateral to operation are represented as colors on a heat map. 

Fold changes were calculated from 2-ΔΔCt. The labeled columns to the left of the maps indicate the gene of interest. 

Each column represents the data from one rat. A key is provided in the bar on the right. Blue squares indicate 

genes that were more highly expressed in the contralateral side (negative fold change in the ipsilateral side), and 

red squares indicate genes that were more highly expressed on the operated side. White squares indicate no 

change, and black squares indicate samples where data could not be obtained.
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Figure 2. Heatmap of gene expression in DRGs of sham-operated rats. 

Fold-change between the DRGs ipsilateral and contralateral to operation are represented as colors on a heat map. 

Fold changes were calculated from 2-ΔΔCt. The labeled columns to the left of the maps indicate the gene of interest. 

Each column represents the data from one rat. A key is provided in the bar on the right. Blue squares indicate 

genes that were more highly expressed in the contralateral side (negative fold change in the ipsilateral side), and 

red squares indicate genes that were more highly expressed on the operated side. White squares indicate no 

change, and black squares indicate samples where data could not be obtained. 
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Figure 3. Immunohistochemistry for DRG ipsilateral and contralateral to knee lesions 

Sections from L4 DRG of rats with surgical lesions to the CCL on the right knee. MMP-9 staining (red) and TrkC 

staining (green) are shown here from DRG contralateral (A) and ipsilateral (B) to the lesion. (C) Relative intensity 

for MMP-9 was slightly but significantly lower in DRG innervating the lesioned knee (p = 0.0129). (D) The mean 

relative intensity of TrkC staining was significantly higher in the DRG ipsilateral to knee lesions (p < 0.0001). (E) In 

the internal control (contralateral) DRG sections, there was no relationship between size and the relative intensity 

of TrkC staining, contrary to what was expected. Scale bar in A and B represents 100 µm. 
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CHAPTER 3 

A COMBINED PROTOCOL FOR THE RETROGRADE TRACING AND SINGLE-CELL RNA COLLECTION 

OF CELLS IN PROPRIOCEPTIVE CIRCUITS 

Abstract 

Changes in proprioceptive circuitry induced by injury or inflammation are poorly understood. 

Most of what work has been done on the molecular level has been focused on specific genes or 

proteins. Few studies have looked at proprioceptors and γ-motoneurons (γ-MNs) to examine 

broadly what phenotypic changes happen in response to injury. We propose a method coupling 

the retrograde labeling of cells innervating the injury site, with tissue dissociation and single cell 

isolation for gene expression analysis. We put forth a protocol for DiI tracing of cells, followed 

by dissociation of dorsal root ganglia (DRG) and spinal cord ventral horn in enzyme solutions 

and single-cell harvesting in lysis buffer. 

Introduction 

 Altered sensitivity in a region of the body is a frequent consequence of injury and 

inflammation1–8. This can be seen both in studies on pain and on proprioception (the sense of 

the position or change in position of body parts), and the effects can be acute, sustained, or 

chronic. Still very little is understood about these changes or their mechanisms. For instance, 

various injuries can lead to excessive sensitivity of the affected region to pain (hyperalgesia)3,5–

7,9–11, or a painful response not appropriate to the stimulus (allodynia)3,5,6,10,11. In regards to 

proprioception, human patients with knees mechanically stabilized knees after anterior cruciate 

ligament (ACL) injuries often still report feelings that the knee is unstable12,13. In both human 
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and dog subjects with ruptured cruciate ligaments, alterations to the hamstring reflex, a 

response that stabilizes the knee, are consistently observed in electromyograms (EMG)12,14. 

 Nociceptive and proprioceptive pathways both involve complex processing at various 

levels of the nervous system. However, one key way to examine changes to these pathways is 

to look at cells directly interacting with the affected tissue in injury and inflammation models. 

That is, it is critical to understand what is happening in cells that innervate the site of the injury. 

Furthermore, in the absence of a visible marker distinguishing cell type, the ability to assess 

phenotypes at the level of a single cell can allow for post-hoc parsing of data based on cell-type 

specific gene expression (if multiplex analysis is used). To this end, we propose a model for 

using a retrograde tracer, DiI, to locate the neurons connected to the tissue of interest and to 

subsequently isolate whole cells for studies in gene expression using enzymatic tissue 

dissociation. For the purposes of proprioception, this also includes the gamma-motoneurons (γ-

MNs) in the spinal cord, as they modulate tension, and thus sensitivity, in muscle spindles. 

Comparison with Other Techniques 

Other tracing studies 

 The reason for using retrograde axonal tracers is to identify neurons based on their 

target tissue.  These types of tracers have been used to study the amount of innervation to a 

given region15–17, the locations of innervation cell bodies18,19 , and the changes these cell bodies 

incur after experimental events4,7,10,20–22. DiI was chosen for the tracer due to its relatively easy 

uptake and transport and to its nearly indefinite survival time within a live organism23,24. 

Because of this, DiI can be injected days or weeks before injury, so as not to alter the effects of 

the injury, and animals can be kept alive for any amount of time before harvesting. 
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The reason for selecting neurons by target is to determine the response of 

individual cells to local changes in their target tissue.  Broader tracing techniques involve 

damaging nerves24,25. Though such techniques are critical in studying pain resulting from 

nerve damage, in this case they are undesirable both because they confound the 

response to changes in target tissue, and because they raise animal welfare issues due 

to extended survival periods. 

This technique addresses questions particularly centered around the 

transcriptome of labeled cells.  Previous studies have looked at changes in the 

expression of individual genes in traced cells, mostly through immunohistological 

techniques7,21,25. These studies produce thorough assessments of global expression 

changes, but proprioceptive circuits rely on specific neuronal subtypes. Analysis of 

phenotypic change in cells relating to proprioception thus necessitates the extraction of 

whole, individual cells.  

Other single cell isolation methods 

 Tissue dissociation techniques have long been used to prepare cells for culturing26–28. 

The following techniques even draw from the experience from previous publications in 

dissociating mouse DRG4,25–27,29–31 and spinal cord25,28,32,33. However, this protocol takes cells 

directly into an isolation and lysis step for analyzing the RNA. Several previous studies have 

done this as well26,34. The main distinction in this case is that, while most previous single-cell 

gene expression studies have been used for characterizing cell types or tracking development, 

we are tracking gene expression in response to peripheral environmental factors. 
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Experimental Design 

 The procedure adheres to the following steps. Initially, mice are injected in the biceps 

femoris muscle (BF, the largest and most accessible of the hamstring muscles) with solutions of 

DiI and DMSO under general anesthesia (Steps 1-5) and allowed to recover for 14 days to allow 

the fluorescent dye to reach the cell bodies of traced neurons23. The animals are then 

euthanized, and DRG are collected from the lumbar 5 and 6 levels18,19 on the side of the animal 

where the injection was made, while the caudal half of the lumbar enlargement is collected 

from the spinal cord18 (Steps 6-13). 

 Fresh tissues are dissociated using solutions of proteolytic enzymes. For spinal cord 

tissue, we use a solution of collagenase and dispase (Steps 14-18)33, while DRG are dissociated 

using a papain solution followed by a collagenase/dispase solution (Steps 19-25)27,29. Cells are 

then picked from a petri dish and placed individually into TCL lysis buffer, and RNA is extracted 

using RNAClean XP beads from Agencourt (Steps 26-34). Afterward, cDNA is reverse transcribed 

from the samples and amplified using a SMART-Seq kit from Clontech (Steps 35-38)35. This can 

then go on to be used for RNA-Seq (Steps 39-46). The basic design for the protocol is laid out as 

a flowchart in Figure 1. 

Materials 

Reagents/buffers 

• Agencourt AMPure XP beads (Beckman-Coulter A63880) 

• Agencourt RNAClean XP beads (Beckman-Coulter A63987) 

• Bovine serum albumin (BSA) powder (Sigma-Aldrich A7906) 

• Buffer TCL 2× (Qiagen 1070498) 
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• Collagenase, Type 1 100 mg (Worthington LS004194) 

• L-Cysteine (Sigma C7352) 

• DiI (Aldrich 468495) 

• Dimethyl Sulfoxide (DMSO, Sigma-Aldrich D8418) 

• Dispase II (Sigma-Aldrich D4693) 

• Ethylenediaminetetraacetic acid (EDTA, Sigma-Aldrich E9884) 

• Ethanol, nuclease-free 100% (EtOH 100%, Sigma-Aldrich) 

• Ethanol spray 70% (EtOH 70%) 

• Hanks Buffered Salt Solution (HBSS) 1× (Gibco 14170) 

• 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Sigma-Aldrich H3375) 

• Isoflurane (VetOne 1-3985-528-60) 

• Papain (Roche 10108014001) 

• Phosphate buffered saline (PBS) tablets (Life Technologies 003002) 

• PBS 10× nuclease-free (Ambion AM9624) 

• RNaseZAP (Ambion AM9780 

• Saline, sterile 0.9% 

• Water, nuclease-free (nuclease-free H2O, Invitrogen 10977-015) 

• SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech Laboratories 634898) 

Equipment 

• C57BL/6 mice (Charles River Laboratories) 

• Disposable Bench Cover 
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• SoftHeat warming pad (Kaz) 

• Vaporizer with induction box (SurgiVet Model 100) 

• SomnoSuite small animal anesthesia system (Kent Scientific) 

• Clippers (Wahl) 

• Hamilton Syringe, 10 µL 31-guage (Hamilton 80308) 

• Nolvasan pads 

• Oxygen tank 

• CO2 chamber 

• Scissors, medium surgical 

• 1-pair small spring scissors (Excelta 366, Fisher 17-467-496) 

• 1-pair fine tip tapered forceps (Fisher 16-100-113) 

• 1-pair fine tip reverse action forceps (Fisher 16-100-126) 

• Scalpel, size 10 (Miltex 4-110) 

• Centrifuge (Eppendorf 5417 C) 

• Warm water bath (37° C)  

• Pasteur pipettes, glass (Fisher 13-678-20A) 

• 2mL Rubber bulb (Fisher 03-448-24) 

• Petri dishes, sterile plastic 

• Inverted fluorescent microscope (Nikon) 

• 2 µL - Microcapillary tubes, heated and pulled to make 2 microcapillary pipettes each 

(Drummond 1-000-0020) 
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• Aspirator tube assembly (Sigma Aldrich A5177) 

• Laminar Flow PCR cabinet (Streamline) 

• DynaMag (Invitrogen 49-2025) 

• Thermocycler, Veriti 96-well (Applied Biosystems) 

Setup 

Stock solutions 

Make up non-sterile PBS solution (for washing dissection sites) by adding 1 tablet 

to each 100 mL of filtered or nuclease-free H2O. 

Prepare 10 % DiI in DMSO solution by adding 100 mg of DiI powder to 800 µL of 

DMSO. Vortex the mixture until it is dissolved. Add DMSO to bring the total volume up 

to 1 mL. Do this procedure in a dark or dim room, and keep the stock solution protected 

from light at -20° C. 

Make up 1 M stock solution of L-cysteine the day before dissociations by adding 

606 mg L-cysteine powder to 5 mL of nuclease-free H2O. Vortex the mixture thoroughly 

until dissolved. Store this at 4° C. Do this the day before dissociations, since L-cysteine in 

solution will oxidize into cystine and precipitate. 

Make up stock EDTA in a small beaker by adding 7.306 g of EDTA powder to 25 mL of 

nuclease-free H2O on a magnetic-stir hot plate at moderate heat and with a stir bar active. 

Every few minutes, add drop or two of 1 M NaOH until the EDTA is completely dissolved. Adjust 

the pH to ~8.0, move the solution to a 50 mL conical tube and add nuclease-free H2O until the 

total volume is 50 mL. Store the solution at 4° C. 
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Make stock HEPES by adding 2.383 g HEPES powder to 8 mL nuclease free H2O, and 

vortex the mixture until it is dissolved. Add nuclease-free H2O to bring the volume up to 10 mL. 

Store the solution at 4° C. 

Prepare 62.5× (15,625 U/mL) collagenase I by adding the appropriate amount of HBSS to 

the collagenase powder (Units/weight for the batch will be given on the label). Filter this into 

sterile microcentrifuge tubes or PCR tubes and store them at -20° C. 

Prepare 100× (240 U/mL) dispase II stock following the same steps as with collagenase I. 

In advance, make up stock 5% BSA stock by adding 0.25 g of BSA powder to 3 mL of 

nuclease-free PBS diluted to 1× in a conical tube. Vortex or turn the conical tube gently until the 

BSA is dissolved. It is easiest to add portions of the BSA at a time. Once this has been dissolved, 

allow the solution to settle in a 4° C cooler or centrifuge it to break up the bubbles. Add PBS to 

bring the volume up to 5 mL. Put the solution in a Luer-lock syringe with a 0.2 µm filter 

attached, and use it to distribute the solution into microcentrifuge tubes. Store the stock buffer 

at -20° C. 

Workspace 

 Clean all workspaces before using. Wipe down areas with 70% EtOH spray for all 

procedures. When working with RNA or preparing materials for RNA extraction, use a dedicated 

workspace if possible. If one is not available, wipe down equipment and work areas with 

RNaseZAP. 

Equipment 

 Heat and pull microcapillary tubes in a needle puller to produce microcapillary pipettes. 

Be sure to use the same machine with the same settings every time. Use one pipette to take up 
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4.5 µL of premeasured H2O and mark the place where the water ends. Use this reference to 

mark the 4.5 µL point on the other microcapillary pipettes. 

Protocol 

Tracer dye injections 

1. Mix up the dye solution by adding stock DiI/DMSO solution to sterile H2O (1:10). Vortex 

the solution thoroughly (final concentration of 1% DiI and 10% DMSO). If it does not 

completely dissolve, it can be further dissolved through sonication. 

2. Place mouse in induction box. Induce anesthesia with 2% isoflurane at 2% air 

replacement per minute.  When the mouse is thoroughly unconscious, place on the 

warmed bench mat with a heating pad and put the Somnosuite nose cone over its face.  

Initiate airflow to the nosecone at 140 to 170 mL/min. Shave the right leg of the mouse. 

Wash with Nolvasan and then with alcohol to sterilize the area. While the mouse is 

anesthetized, draw 5 µL of the dye solution into the Hamilton syringe. (Troubleshooting: 

If the dye solution is not being drawn up into the syringe, or undissolved flecks are 

visible, sonicate the sample again.) 

3. Using a razor blade, scissors ends, or fine scalpel, make a small incision near the lower 

caudal part of the lateral thigh near the back of the knee joint (Fig 2). Be sure not to cut 

through the fascia. 

4. Move the skin until the incision is over the back of the BF about halfway up. Insert the 

Hamilton syringe at around a 20-degree angle to the surface, going proximally and 

parallel to the back side of the BF triangle (Fig 2) until the needle is 5.5 to 6 mm in. This 

should bring it to a point of the BF near the insertion in the hip, around 2 mm deep. 
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Slowly inject 3 to 4 µL of dye solution. Hold the syringe in place for 1 to 2 minutes 

before slowly removing. Move the incision window slightly closer to the back of the 

knee. Insert the needle going anterior and slightly proximally (again, at a 20-degree 

angle to the surface), until the needle is 4.5 to 5 mm deep. Inject as before. (Helpful Tip: 

DMSO can cause acute and transient muscle spasms. These are minor, and end before 

the animal regains consciousness. We have observed that these mild spasms are a 

helpful guide to ensure you have injected the correct muscle.) 

5. When finished, wash the wound with sterile saline from a syringe. Place the mouse in a 

warmed cage until it regains consciousness. 

Dissections 

6. Before dissections, prepare working solutions and buffers for tissue dissociation. Add 

100 µL of HEPES stock to 9.9 mL HBSS to supplement the HBSS with 10 mM HEPES34. 

Prepare 0.1% BSA by adding 200 µL 5% BSA stock to 9.8 mL nuclease-free 1× PBS in a 

conical tube. For collagenase/dispase, add 48 µL of collagenase stock solution to 2.9 mL 

of HBSS/HEPES, then add 30 µL of dispase II stock solution. The working concentrations 

should be 250 U/mL collagenase I and 2.4 U/mL dispase II. For a working papain 

solution, add 12 µL of cysteine stock and 12 µL of EDTA stock to 2.2 mL of HBSS/HEPES. 

Next add 160 µL of stock papain. Working concentrations will be 20 U/mL papain, 5 mM 

cysteine, and 0.5 mM EDTA. Allow the papain solution to incubate at room temperature 

for 30 minutes before using. (Variation: All solutions can be scaled up for larger amounts 

of tissue.)  
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7. Place mouse in chamber and turn on CO2 to replace 20% of air per minute. Wait until 

respiration has ceased for a minute. Turn off CO2 and remove mouse from chamber. 

Place a pen at the back of the head and hold the tail. In a single motion, press down and 

forward on the neck and pull up and back on the tail to break the neck. Check to make 

sure cervical spine has been dislocated. 

8. Shave the back of the mouse and remove all excess hair. Cut open the ventral side of 

the animal with several paper towels underneath the animal, and cut the heart. This 

allows blood to drain out the ventral side of the animal so that it will cause fewer 

complications in the dissection of the spine. 

9. Spray the back of the animal with 70% EtOH. Cut skin across and pull open to reveal the 

back. Cut the skin along the back to fully expose the spine. 

10. Cut across and into the spinal column in upper to mid thoracic level. Lift up the spine 

using forceps and cut the top of the vertebra and surrounding tissue on either side. 

Move along and alternate between sides. Go until the lower thoracic and upper lumbar 

have been exposed.  Locate the 13th thoracic (T13) vertebral body by finding the last 

floating rib. Count to the appropriate lumbar segments and remove the DRG from the 

5th and 6th (L5 and L6) segments (Fig 3). 

11. Place DRGs in PBS or HBSS and, under spectacle-mounted magnifying glasses (loupes) or 

a dissecting microscope, trim them. Place them in tubes of HBSS and put them on ice. 

12. Keep spinal cord from drying using PBS. Locate the L2-L6 segments (From caudal T11 to 

rostral L1 vertebral bodies ~8mm long36, Fig 3). Carefully cut out the section, place in 

PBS or HBSS. 
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13. Cut the spinal cord along the midline, and set aside the left side.  Turn the right side 

over so that the dorsal horn can be cut off.  Discard dorsal portion.  Cut the portion of 

interest into 4 equal segments (2mm lengths).  Collect the caudal two segments in an 

HBSS tube and place them on ice. 

Dissociation 

Spinal cord 

14. Using forceps, carefully move the length of spinal cord and place it on a glass slide in a 

petri dish. Keep it hydrated with HBSS. Using a scalpel, cut down the midline of the 

spinal cord, and discard the tissue from the unlabeled side. Carefully trim off the dorsal 

half of the spinal cord, and trim off white matter. Place the isolated ventral horn in 1 mL 

of pre-warmed HBSS. (Variation: The volume of HBSS may be increased as needed if 

samples are being pooled.) 

15. Spin the sample at 1000 rpm for 1 minute. Aspirate the HBSS and replace it with 1100 µL 

of a pre-warmed collagenase/dispase solution and place it in the 37° C water bath. 

Gently vortex the sample at a low setting every 5 minutes to keep the sample 

suspended (tapping to disrupt the tissue can introduce air bubbles, which can damage 

cells). Triturate with a glass micropipette and a rubber bulb 10 times halfway through 

the incubation. 

16. After 40 minutes, remove the sample from the heat bath and triturate the sample with a 

glass micropipette 10 times to fully dissociate the cells. 
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17. Centrifuge the sample at 3600 rpm for 3 minutes. Aspirate the supernatant and 

resuspend the pellet in 1 mL of 37° C HBSS. (Troubleshooting: If there is a trail of cells 

along the of the tube, centrifuge it for one or two more minutes.) 

18. Centrifuge the sample again at 3600 rpm for 3 minutes. Aspirate the supernatant and 

resuspend the sample in 500 µL BSA solution. Let the suspension sit for 1 minute, 

allowing large, undissociated debris to settle to the bottom, then transfer 400 µL to a 

new tube. Add 300 µL of BSA to the old tube, resuspend the sample, and allow it to 

settle again before transferring 300 µL to the new tube. Do this once more with 300 µL 

of BSA. The new sample tube should have approximately 1 mL suspension. (Variation: 

These volumes can be scaled up if samples are being pooled.) 

Dorsal root ganglion 

19. Place DRG L3 and L4 in a petri dish in HBSS. Using forceps and small spring scissors, 

carefully remove the meninges and any remaining nerve tissue. Using a pipette, 

carefully draw up the DRG and place it in 1 mL of 37° C HBSS. 

20. Spin the sample at 1000 rpm for 1 minute. Aspirate the HBSS and replace it with 1200 µL 

of a pre-warmed papain solution and place it in the 37° C water bath. Vortex the sample 

gently on a low setting every 5 minutes for 20 minutes. 

21. Triturate the sample 10 times with a glass micropipette, then spin it at 2300 rpm for 4 

minutes. (Troubleshooting: If there is a trail of cells along the of the tube, centrifuge it 

for one or two more minutes.) 

22. Aspirate the supernatant and resuspend the pellet in 1400 µL of Collagenase/Dispase 

solution. Replace the sample in the 37° C bath for 20 minutes. 
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23. Triturate the sample 10 times, then centrifuge it at 2300 rpm for 4 minutes. 

(Troubleshooting: If there is a trail of cells along the of the tube, centrifuge it for one or 

two more minutes.) 

24. Aspirate the supernatant and resuspend the pellet in 1300 µL or 37° C HBSS. Centrifuge 

the sample at 2300 rpm for 4 minutes. (Troubleshooting: If there is a trail of cells along 

the of the tube, centrifuge it for one or two more minutes.) 

25. Centrifuge the sample again at 3600 rpm for 3 minutes. Aspirate the supernatant and 

resuspend the sample in 250 µL BSA solution. Let the suspension sit for 1 minute, then 

transfer 200 µL to a new tube. Resuspend the sample in the original tube with 200 µL 

BSA, allow it to settle for 1 minute, then transfer 200 µL to the new tube. Do this once 

more with 200 µL of BSA. The new sample tube should have approximately 600 µL 

suspension. (Variation: These volumes can be scaled up if samples are being pooled.) 

Single cell isolation and RNA extraction 

26. Bring the cell suspension and pre-measured PCR tubes of lysis buffer to an inverted 

fluorescent microscope. Place 6 mL of 0.1% BSA solution into a petri dish, or enough to 

cover the bottom. Pipette 500 µL of cell suspension into the petri dish. Place it on the 

stage of the microscope (with the lights turned off) and allow it to settle for 5 minutes. 

During this time prepare TCL for cell collection by adding 1 µL β-Mercaptoethanol to 49 

µL 2× TCL and place 4.5 µL of the solution into each PCR tube, keep covered and on ice. 

(Variation: The lid of a multi-well plate can be used in place of a petri dish if this is 

preferred. If more cells are to be harvested, prepare more TCL buffer.) 
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27. Turn on the fluorescence with a red filter setting (TRITC filter set). Locate a cell that 

fluoresces red, and then switch to bright-field illumination. 

28. Take the microcapillary pipette and place it in the tube apparatus. Place the other end 

of the apparatus in your mouth, and press against it with the tongue (this keeps 

pressure inside the tube so that capillary action does not fill up the pipette before 

picking the cell). Carefully move the pipette until it is next to the cell in the objective, 

then release the pressure in the tube by releasing your tongue just long enough to pick 

up the cell. From another container, take in BSA until it has reached the marker on the 

microcapillary pipette. Critical step 

29. From a clean tube of BSA, fill the pipette. Putting pressure on the tube, eject the cell and 

solution carefully into a tube of pre-measured lysis buffer (still on ice). Cap the tube and 

keep it on ice. 

30. Repeat steps 2 through 4 until the desired number of labelled cells have been collected. 

If there are not enough labelled cells in the dish initially, add the rest of the sample to 

the petri dish. 

31. When the desired number of cells has been collected, move the tubes to an RNase-free 

work area and remove from the ice. Allow the cells to incubate at room temperature for 

30 minutes. 

32. Add 16.2 µL (1.8 volumes) of Agencourt RNAClean XP solution to each tube. Pipette 

gently up and down 10 times. Incubate for 3 to 5 minutes at room temperature. Then 

place the tubes in a magnet for 5 minutes. If the solution has become clear, remove the 
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supernatant carefully. While the samples are incubating, prepare 70% ethanol from 

nuclease-free H2O and nuclease-free 100% EtOH. 

33. Add 200 µL of 70% Nuclease-free ethanol to each tube, and allow to sit at room 

temperature for 30 seconds before aspirating. Repeat this step two more times. 

34. Allow the reaction to air dry. This should take around 10 minutes. When it is dry, add 10 

to 15 µL Ultrapure H2O and pipette up and down 10 times. Take the samples off of the 

magnet and put them on ice. Critical step 

cDNA synthesis 

35. Add 1 µL of reaction buffer to each RNA sample. Place samples on ice. With samples on 

ice, add 2 µL of 3’ SMART-Seq CDS Primer IIA. Vortex or pipette the samples gently. 

Briefly spin down the samples on a small centrifuge. 

36. Incubate the samples in a preheated, hot-lid thermocycler at 72°C for 3 minutes. 

Immediately place samples on ice for 2 minutes. Preheat the thermocycler to 42° C. In 

the meantime, prepare the Master Mix according to manufacturer instructions. 

37. Add 2 µL of SMARTScribe Reverse Transcriptase to Master Mix just before use. Then add 

7.5 µL Master Mix to each reaction. 

38. Place samples immediately in Thermocycler and run the following program 

• 42°C for 90 minutes 

• 70°C for 10 minutes 

• 4°C indefinitely 

Place the samples on ice afterward. (Pause point: From here, samples can be kept 

overnight at 4° C.) 
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cDNA amplification and purification 

39. Remove samples from cooler. Prepare PCR master mix and add 30 µL of it to each 

sample. Mix and briefly spin them. 

40. Place tubes in preheated thermocycler and run the following program 

• 95°C for 1 minute 

• 15 X 

o 98°C for 10 seconds 

o 65°C for 30 seconds 

o 68°C for 3 minutes 

• 72°C for 10 minutes 

• 4°C indefinitely 

41. Add 1 µL of 10X Lysis Buffer to each sample. Then add 50 µL of Agencourt AMPure XP 

beads to each sample. Pipette each one up and down 10 times. 

42. Incubate the samples at room temperature for 8 minutes. Briefly spin and place samples 

in the magnet for 5 minutes, or until the beads have separated out. Remove the 

supernatant. While the samples are incubating, prepare 80% ethanol from nuclease-free 

H2O and nuclease-free 100% EtOH. 

43. Add 200 µL of Nuclease-Free 80% Ethanol to each sample carefully. Incubate 30 seconds 

before carefully removing the ethanol. Repeat this step one more time.  

44. Incubate the pellet to sit at room temperature for 2 to 2 ½ minutes, when the pellet has 

just barely dried. Critical step 
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45. Add 17 µL of nuclease-free H2O, remove the samples from the magnet and gently 

pipette several times. Incubate samples at room temperature for 2 minutes. 

46. Briefly spin the samples and place them back on the magnet until the solution has 

become clear. Then carefully remove the supernatant and place it in a new tube that 

has been appropriately labeled for the contents. Discard the tube containing the beads. 

Discussion 

Verification of steps in the protocol 

 The efficacy of the tracing procedure was verified histologically. DRG samples were 

briefly fixed in 4% paraformaldehyde, cryoprotected in graded sucrose solutions (15%, 20%, 

30%, 12 hours each), and flash frozen in O.C.T. (Tissue-Tek). Using a cryostat (Thermo 

Scientific), 10 µm-thick sections of L4, L5, and L6 DRG and 30 µm-thick spinal cord samples were 

collected onto glass Superfrost plus slides (VWR). Labeled cells were located in L4 and L5 DRG 

(Fig 4). Likewise, labelled motoneurons were found in the ventral horn of sections from the 

caudal half of lumbar enlargement spinal cord. These were also located in the same region of 

the ventral horn as BF traced neurons traced by Bacskai and colleagues18. 

 Due to events beyond our control, we were unable to complete the protocol in full. 

Tests were performed on tissue from untraced mice to compare the enzyme mixtures and 

dissociation protocols used in previous techniques (Fig 5). We were unable, however, to obtain 

a large number of neuron sized cells (at least 250 µm2)7,15,37,38 in any of the samples. This is 

likely because of the fact that these cells, due to time constraints around housing time of the 

animals, were stored in RNAlater at -80° C, allowing us to dissect all rats in one day and 

dissociate on a later date. 
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 Furthermore, we were not able to verify the RNA isolation or the cDNA output from 

isolated cells. However, we did test the quality of cDNA using rat DRG cells dissociated with 

papain followed by collagenase/dispase. As with our mouse samples, the rat tissue had also 

been stored in RNAlater at -80°C. During the cDNA synthesis and amplification steps, one tube 

was prepared using 30 pg of control RNA (from SMART-Seq kit) for each of three test runs as 

positive controls. The cDNA samples were analyzed on High Sensitivity DNA chips (Agilent) on 

an Agilent 2100 Bioanalyzer. According to personal correspondence with ClonTech technical 

service, 10 pg of high-integrity RNA should yield 3.4 ng of cDNA. One sample yielded almost no 

cDNA, even in the control well, whereas the others yielded approximately 1.67 ng total (Fig 6a) 

and 9.43 ng total. One cell from the same sample as the 1.67 ng control yielded approximately 

1.49 ng total (Fig 6b). This suggests that the synthesis and amplification step is working most of 

the time, and that some cells are producing cDNA, but there is still a problem either capturing 

cells or with the extraction of RNA. However, previous studies have accomplished this 

combination of protocols35.  

Applications of the protocol and possible future steps 

This technique has potential for assessing gene-expression responses of neurons to 

various peripheral conditions. Pain studies, for instance, would be able to focus on the response 

of a small number of cells to localized injuries. In one study, neurons were traced with DiI prior 

to the injection sites being inflamed using an adjuvant8. Electrophysiological experiments on 

the dissociated neurons revealed increased excitability in the inflamed group compared to the 

control, but they did not look at gene expression. Other studies have revealed upregulations of 

sodium channels to be involved in increased pain sensitivity after inflammation5,6, but did not 
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trace the cells in question. Another experiment showed evidence that increased sensitivity in 

cells traced from the knee involved more readily phosphorylated ERK7.  

This technique also has broad potential for studying alterations in proprioception. Little 

has been done to assess changes in proprioception after injury, but an increase in sensitivity 

has been associated with increased voltage-gated sodium channels (specifically Nav1.8) in Aβ 

fibers, which receive signals from non-adapting stretch receptors5. Additionally, since the 

technique involves tracing the muscle, it allows investigators to assess changes in gamma 

motoneurons. This is important because it can show responses to synergistic changes as well. 

For instance, hamstring gamma motoneurons have been shown to respond reflexively to 

stretches in the cruciate ligament39, thus playing a role in stabilization of the knee joint. 
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Figure 1. Flowchart for the protocol design 

Animals are first injected in the biceps femoris (BF) 

muscle with DiI (top left). After allowing the dye to trace 

for at least 1 week, animals are sacrificed, and spinal 

tissue from the lumbar enlargement is collected, as well 

as DRG from L4 through L6 ipsilateral to the injection (top 

right). Collected and trimmed tissue is then dissociated 

through the appropriate protease enzyme to separate the 

cells (middle panel). Cells are then placed in a petri dish 

under a fluorescent microscope, where a glass 

micropipette can be used to collect individual cells that 

fluoresce red, and place them in lysis buffer (bottom 

panel). 

 

 

   Figure 2. Injecting DiI into the biceps 

femoris. 

 Knowing anatomical landmarks can 

be helpful to ensure the proper muscle is 

injected. The biceps femoris can be located by 

drawing an imaginary triangle between the 

back of the knee, the front of the knee joint, 

and the hip joint. Injections posterior to this 

area are likely to accidentally label the 

semitendinosus. 
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Figure 3. Dissections for mouse neural tissue. 

 When the mouse has been euthanized, and its back is shaved and 

sprayed, make and incision along the midline and another across the skin of 

the back. Pull back the skin, and then use small scissors to remove the muscles 

from the spine. Locate the vertebrae junctions at T10-T11 and L1-L2 (arrows). 

The lumbar enlargement is typically located between these two points. These 

vertebrae are best located by finding the last floating rib, which marks the back 

of T13, and counting from there. Carefully remove the lamina of the spine by 

gently lifting with forceps while clipping the sides with spring scissors. Using a 

scalpel or razor blade, cut out the caudal half of the lumbar enlargement. DRG 

should be retrieved after spinal tissue. Cells traced from the biceps femoris 

should be found in L4-L6 (arrowheads). These can be found just inside the corresponding vertebrae, as small nodes 

on spinal nerves. 

 

A                B   

Figure 4. Traced neurons were observed in expected regions. 

 Previous studies have demonstrated that MNs innervating the hamstring are typically located in the 

internal portion of the ventral horn between L3 and L6 (A). 5 days after DiI injection, mice were euthanized, and SC 

samples from the lumbar enlargement (L2 to L6) were taken, perserved in PFA, and sectioned on a cryostat. 

Fluorescence microscopy (B) using green autofluorescence to delineate the white matter demonstrates that BF-

traced cells were found in this area. 
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A       B  

C       D  

Figure 5. Assessment of dissociation techniques.  

Different enzymatic dissociations were used to assess which had better output in each type of tissue. Cells were 

suspended in BSA and a sample was placed in a hemocytometer. JPEG images were taken through the 20× 

objective on an upright microscope. For each image, four 1mm×1mm squares were imaged. Using ImageJ, 

measurements were calibrated to the length of a segment within each square (250 µm) and each cell was traced 

and the area measured. For DRG samples, L5 and L6 from the right side in animals 1 and 3 were dissociated using 

papain followed by collagenase/dispase (A), while samples from 2 and 4 were dissociated using just the 

collagenase/dispase solution (B). From each animal, the VH from one side was dissociated using collagenase and 

dispase (C), whereas the other side was dissociated using collagenase alone (D). We did not see a sufficient 

number of cells large enough to be neurons in any of the samples. This is likely due to tissues having been stored 

frozen in RNAlater for extended periods of time. 
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A  

B  

Figure 6. Quantification of cDNA from Single Cells 

RNA samples from lysed single cells were reverse transcribed and amplified using kits from ClonTech. 

Quantity of cDNA was assessed on an Agilent Bioanalyzer. Fluorescence units (FU) are marked on the y-axis, while 

the x-axis marks the time in seconds. Quantity is determined via area-under-the-curve using upper and lower 

markers of known size and concentration as well as a ladder well. The bars on the left are virtual gel lanes derived 

from the respective data. (A) A smear analysis of a sample from 30 pg RNA positive control shows a yield of 1.67 ng 

cDNA (98.26 pg/µL, 17 µL). (B) A smear analysis from a sample of a single-cell lysate from the same experiment 

shows a yield of 1.49 ng cDNA (87.43 pg/µL, 17 µL). 
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CONCLUSIONS 

Significance of Proprioceptive Deficits and Possible Mechanisms 

 Proprioception is an essential sensory modality for proper motor function and quality of 

life. Information is transmitted initially by large-diameter A-fibers innervating Golgi tendon 

organs (GTOs) and muscle spindles1–3. Muscle spindle sensitivity is mechanically modulated by 

input from γ-motoneurons (γ-MNs)4,5, which in turn receive signaling from GTOs6,7, thus 

completing a full synergistic circuit. 

Disruption of proprioceptive input from the limbs is a common and poorly understood 

consequence of major injuries8–14, often lasting beyond repair of the affected region of the 

body. A common cause for proprioceptive abnormalities is the rupture of the anterior cruciate 

ligament (ACL/CCL)9,10,12,13,15–17. Patients with ACL deficient knees have problems detecting knee 

motion and position9,12, and feelings of “giving way” last in many patients even following 

successful reconstruction14,18. This feeling is likely associated with a change in the hamstring 

reflex which responds to ACL stretch14,17,19–21. A better understanding of this phenomenon 

could improve patient care, as proprioceptive function is linked to satisfaction and return to 

previous activity14. 

A model that may provide a blueprint for approaching this topic is the response of 

nociceptive neurons to injury and inflammation. Transient and long-term changes in the 

molecular phenotype of DRG nociceptors lead to hypersensitivity and mechanical allodynia22,23. 

This typically occurs through the interaction of neuroinflammation, calcium-mediated signaling, 

and changes to the membrane potential. Activity of proteins such as activating transcription 

factor 3 (ATF3) and p38 MAPK is increased in all cell types after injury in all cell types in the 
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DRG23,24. In nociceptors, these proteins have been shown to be important in either mediating or 

regulating inflammatory responses and increased sensitivity to stimuli24–31. It is possible that 

the increased activity of these proteins in proprioceptors activates similar pathways. While 

increased sensitivity and action potential rate in nociceptors has been tied to upregulation of 

TTX-resistant sodium channel activity25,26, it is unknown whether a comparable event occurs in 

proprioceptors. 

 The similar changes in signal-cascade proteins between proprioceptors and nociceptors 

provides an opportunity for research into molecular mechanisms of proprioceptive pathology. 

This thesis proposes several methods for analyzing both primary proprioceptors and associated 

γ-MNs. The first technique was to section the CCL in a rodent model, and use a gene profiling 

array to assess changes in the lumbar DRG. Following this, a protocol was developed to 

retrogradely trace neurons of the hamstring muscles, pick out labeled cells from dissociated 

tissue, and procure cDNA libraries from single cells for gene expression analysis. Conclusions 

from these techniques are summarized below. 

Changes Following CCL Rupture 

 No gene was significantly upregulated or downregulated in whole Lumbar DRG three 

weeks after knee surgery. This is likely due to the late timepoint, as many inflammatory neural 

responses occur within the first few days after injury 26,29,32–34. This experiment also analyzed 

RNA from whole-DRG homogenates. Out of thousands of neurons and thousands more glial 

cells in a single ganglion, knee joint afferents comprise at most 300 cells in a lumbar DRG35. 

Future work in this field would benefit from more targeted approaches to the proprioceptors of 

the knee joint. 
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There were phenomena of note in the results of the arrays. The tendency toward 

upregulation of matrix metalloproteinase 9 (MMP-9) in DRGs ipsilateral to lesioned knees could 

be reflective of the after-effects of MMP-9 regulation occurring across the first week after 

surgery29. Furthermore, the expression of neurotrophin 4 (NTF4) was slightly but consistently 

upregulated in the lesioned side compared to the contralateral, but not was not upregulated in 

sham-operated animals. This could have implications in pain36–38 or nerve recovery39. 

Further experiments into sensory neuron response to CCL-rupture, and indeed all such 

proprioceptive-response studies, should distinguish between the profiles of individual cells 

rather than relying on gross RNA collection. Also, the potential upregulations of MMP-9 and 

NTF4 reinforce the need to focus on analogs within proprioceptors to pain. In the next paper, a 

protocol is constructed to accomplish this by labeling cells based on target tissue, and isolating 

cells from within the target tissue. 

Retrograde Tracing and Single-Cell Isolation 

 In the final chapter of this thesis, a protocol was developed to address the challenges of 

analyzing proprioceptive responses to injury on a cellular level. Retrograde tracing with the 

fluorescent dye DiI was used to identify neurons based on their target tissue. This was 

determined to be the optimal choice among tracing dyes due to its long detectable lifespan in 

living tissue40. The model was developed using the mouse biceps femoris (BF) as a model. This 

allows the tracing both sensory and motoneurons, providing for a more comprehensive look at 

proprioceptive circuitry. Additionally, tracing of motoneurons and sensory neurons from the BF 

is well characterized41,42. At the desired timepoint, spinal cord ventral horns and dorsal root 

ganglia were collected from the traced side and dissociated using a solution of collagenase and 
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dispase or papain followed by collagenase and dispase43–45. Single cells are then picked for RNA 

analysis46,47. 

 During assessment of the phases of the protocol, histological sections of caudal lumbar 

spinal cord and DRG were both consistent with the findings of previous researchers41,42. 

Furthermore, cDNA synthesis and amplification with the SMART-Seq v4 kit from Clontech 

reliably produced the expected amount of cDNA from positive control RNA wells, and one cell 

collected from a rat in early practice of the technique also produced a testable amount of 

quality cDNA.  

There were setbacks to the development of the protocol, and it was not carried out in 

its complete sequence. Most cells collected did not yield any cDNA. It is unclear, at this time, 

whether this is due to a failure single-cell collection technique or the RNA-extraction technique. 

Additionally, few cells large enough48–51 to be sensory neurons or γ-MNs were found in any of 

the dissociated samples. This is likely because time constraints required the storage of samples 

at -80° C for up to a month before dissociation. In practice, neural tissue should be dissociated 

immediately after dissection. 

Despite the setbacks, we have confidence in the feasibility of this protocol. Similar 

single-cell collection techniques for gene expression assays have been successful46,47. Indeed, 

the procedure for preparing the cells was derived from that of Setija and colleagues to prepare 

samples for RNA-Seq47. Additionally, using gene expression profiles, afferent cells can be sorted 

into cell type based on cell-type-specific markers. The same can be done for distinguishing γ-

MNs from α-MNs50,51. Further applications of the technique could be applied to other muscles 

or joints of interest. 



79 

 

Integration and Further Implications 

 Though there no few positive results in our CCL-rupture experiment, there is still much 

potential for research on this topic. Our observation of MMP-9 upregulation in DRG after CCL 

lesion suggests that we achieved an inflammatory model in nociceptors26,29. Retrograde tracing 

has also been successfully used on joint afferents35,40,52, so the protocol defined in Chapter III 

can be applied as well. The challenge faced that circumstance, however, would be the relatively 

low number of the dissociated neurons that would trace to the knee joint. 

 Further studies could also examine for effects damage on neurons that act 

synergistically with those of the damaged region. For instance, γ-MNs can be analyzed using the 

tracing and dissociation protocol. Hamstring proprioceptive afferents are sensitized in response 

to CCL stretch via synaptic connection between GTOs and γ-MNs53. A possible experiment to 

explore this would be to see if the altered pattern of input from the tendon afferents had a 

phenotypic effect on γ-MNs. 

 Overall, this information presents a promising frontier into the functioning of the 

peripheral nervous system. Further study into the molecular mechanisms of proprioceptive 

change and disruption could be a source of information for therapeutic paradigms. If a 

neuroinflammatory model underlies the persistent proprioceptive deficit in injury models, 

mediators of this response may become potential drug targets. In addition to this, a deeper 

understanding of the relationship between activity and the progression and outcome of 

inflammatory responses could better inform decisions in physical therapy. 
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